Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Water-levels and salinity were measured in seven shallow (ca. 2 m deep) wells installed at distances proximal, medial, and distal to the source of tidal flooding between 2017 and 2019 in a warm-season grass meadow adjacent to a salt marsh. Water-table fluctuations greater than 10-cm were associated with seawater, precipitation, or a combination of the two. When the field was flooded by tides (> 0.5 m above predicted), groundwater salinity increased; when the field was flooded by precipitation (> 2.5 cm), the salinity of the groundwater decreased. The increased head gradient that accompanied the rise in the water table appeared to be sufficient to allow the freshwater from precipitation to push the salt water down and towards the marsh creek, resulting in a freshening of the groundwater that persisted until the next saltwater flooding event. Thus, the relative frequency between saltwater flooding, salinization, freshwater flooding, and flushing controlled the groundwater salinity. These findings indicate the importance of high-tide events in the process of salinization of the groundwater and the ameliorating effects of rainfall events whose magnitude is sufficient to increase groundwater elevation at least ten centimeters. Further, they contribute to a growing body of evidence in support of the interaction between fresh- and saltwater flooding events to enhance the salinity of groundwater and drive ecosystem transition from uplands to salt marshes.more » « less
-
null (Ed.)Complexities of terrestrial boundaries with salt marshes in coastal lagoons affect salt marsh exposure to waves and sediments creating different potentials for marsh migration inland and seaward-edge erosion, and consequently, for marsh persistence. Between 2002 and 2017, migration and edge erosion were measured in three mainland geomorphic marsh types (headland, valley, hammock) and were used to assess the rate and spatial extent of marsh change for a Virginia coastal lagoon system. Treelines, shorelines, and marsh perimeters were delineated in ArcGIS at 1:600 resolution. All marsh types increased in spatial extent; increases were greatest for the valley type (0.58 ha ± 0.31 ha or + 0.32% per annum). Measured rates of migration (headland > valley > hammock) and erosion (headland > hammock > valley) for each geomorphic type were averaged and applied to obtain changes in these same marsh types at the regional scale. At this scale, valley marsh area increased (82.5 ha or 5.5 ha a−1) more than the other two marsh types combined. This analysis demonstrates the critical influence that geomorphic type has on lateral marsh responses to sea-level rise and that efforts to conserve or restore salt marshes are most likely to be successful when focused on valley marshes.more » « less
-
The movement of salt marshes into uplands and marsh submergence as sea level rises is well documented; however, predicting how coastal marshes will respond to rising sea levels is constrained by a lack of process-based understanding of how various marsh zones adjust to changes in sea level. To assess the way in which salt-marsh zones differ in their elevation response to sea-level change, and to evaluate how potential hydrologic drivers influence the response, surface elevation tables, marker horizons, and shallow rod surface elevation tables were installed in a Virginia salt marsh in three zones that differed in elevation and vegetation type. Decadal rates of elevation change, surface accretion, and shallow subsidence or expansion were examined in the context of hydrologic drivers that included local sea-level rise, flooding frequency, hurricane storm-surge, and precipitation. Surface elevation increases were fastest in the low-elevation zone, intermediate in the middle-elevation zone, and slowest in the high-elevation zone. These rates are similar to (low- and middle-marsh) or less than (high-marsh) local rates of sea-level rise. Root-zone expansion, presumably due to root growth and organic matter accumulation, varied among the three salt marsh zones and accounted for 37%, but probably more, of the increase in marsh surface elevation. We infer that, during marsh transgression, soil-forming processes shift from biogenic (high marsh) to minerogenic (low marsh) in response, either directly or indirectly, to changing hydrologic drivers.more » « less
An official website of the United States government
